TEMPERATURE-DEPENDENT RESISTIVITY OF A
FLAT CONDUCTOR AND THE TEMPERATURE,
CURRENT, AND ELECTRIC FIELD PATTERNS

R. S. Kuznetsgkii UDC 538.56

Characteristic physical quantities have been determined as functions of the nonlinearity cri-
terion and the frequency criterion for a flat conductor heated by a current having stationary
and current distributions but temperature-dependent conductivity.

It is necessary to perform local corrections for the temperature dependence of the specific resis-
tance in a current-heated conductor when calculating the temperature and current distributions for high
temperatures and high heat fluxes.

The steady-state temperature and field distributions in a flat conductor x = 1 heated by a mono-
chromatic current may be determined from the following system of nonlinear differential equations in the
presence of surface heat loss (the temperature and the tangential monochromatic electric vector are given
at the surfaces), in particular, when the specific resistance is temperature-dependent:

pt’ = — g2, pe’ = in%; ((1)=1t'(0)=¢ (0) =0, e(ly=1, 1)

where the current density is j = e/n; the specific feature here is o(t). We assume the linear dependence
p(t) = kt + 1 usual for solid conductors. The purpose here is to determine the effects of o(t), which are
usually neglected, i.e., the quantitative effect of the nonlinearity criterion k, which influences various char-
acteristic physical quantities (functionals defined by criteria) and which can be derived from (1) as coor-
dinate distributions t(x), e(x), and j(x).

System (1) cannot be integrated in quadratures and has been interpreted numerically by matrix fitting
by computer with series of values for the criteria n and k and the ranges 0 = n=1,57, 0=k = 10%; some
of the results of major interest are shown in Figs. 1 and 2. The maximum value of t{0) in the median plane
is shown as a function of k (argument) for various values of n (parameter), as is the mean conductor tem-
perature (t), the total relative change in specific resistance 6p = kt(0) {absent in the linear case, k = 0),
and the minimal values for the electric field €(0), current density ¢(0), and phage ¢(0) in the mean plane x
= 0. The quantities t(0) and (t) characterize the nonuniformity in the heating; €(0) represents the penetra-
tion of the external electric field into the conductor (field skin effect), while (0) represents the uniformity
in the current distribution in the conductor (current skin effect, which coincides with the field skin effect
for k = 0,and ¢(0) represents the phase shift of the electric field at depth and the shift in the current den-
sity by comparison with the boundary values.

All these quantities as functions of n or n? have turning points with zero derivatives at n = 0; they
ave all decreasing functions of n, and their n dependence becomes weaker as k increases. If k is sufficiently
large, kt(0), (t), 6o and +(0) are virtually independent of n and are functions of k alone. As k increases, the
values of t{0), (t) and 1(0) decrease without limit (tend to zero); ép, £{(0) and ¢(0) increase, the increases
being without bound, tending to 1, and tending to 0 (while remaining negative), respectively.

Theoretical analysis of (1) for Very large values of the nonlinearity criterion (k » max (1; n')) give the
following asymptotic relations:
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Fig. 1 ¥ig. 2
Fig. 1. Maximum temperature t(0) (in mean plane x = 0), mean tem-

perature (t) of

conductor, and total relative change §p in specific

resistance as functions of k for various n.

Fig. 2. Minimum values in mean plane x = ¢ of conductor: a) €(0); b)
i(0); ¢) ¢(0) as functions of k for various n.
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These agree with results of numerical integration of (1) for large k.
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NOTATION

is the angular frequency of current (field};

are the thermal conductivity, absolute magnetic permeability, and
temperature coefficient of specific resistance of conductor;

is the specific resistance near surface (at zero temperature);

is the amplitude of tangential electric vector at surface;

are the controlling criteria (frequency criterion and nonlinearity cri-
terion, respectively) ;

are the coordinate ( x = 1), temperature of surface x = 1 of a planar
conductor, specific resistance, complex electric field, and current
density amplitude (everywhere parallel to €p) as referred to half-.
thickness a of the planar conductor and to (eoa)z/kpo(z—éso), Og> €, &
/p,, respectively;

is the mean temperature of conductor;

ig the total relative change in specific resistance of conductor.
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